Pebbles at the edge of Greenland’s ice sheet, shown here in 2019, contain zircon crystals that were altered by an impact about 58 million years ago.
The powerful impact that created a mysterious crater at the northwestern edge of Greenland’s ice sheet happened about 58 million years ago, researchers report March 9 in Science Advances.
That timing, confirmed by two separate dating methods, means that the asteroid or comet or meteorite that carved the depression struck long before the Younger Dryas cold snap about 13,000 years ago. Some researchers have suggested the cold spell was caused by such an impact.
Headlines and summaries of the latest Science News articles, delivered to your inbox
Thank you for signing up!
There was a problem signing you up.
Scientists spotted the crater in 2015 during a scan by NASA’s Operation IceBridge, which used airborne radar to measure the ice sheet’s thickness. Those and other data revealed that the crater, dubbed Hiawatha, is a round depression that spans 31 kilometers and is buried beneath a kilometer of ice (SN: 11/14/18).
The next step was to determine how old the Hiawatha crater might be. Though the depression itself is unreachable, meltwater at the ice’s base had ported out pebbles and other sediments bearing telltale signs of alteration by an impact, including sand from partially melted rocks and pebbles containing intensely deformed, or “shocked,” zircon crystals.
Geochemist Gavin Kenny of the Swedish Museum of Natural History in Stockholm and colleagues dated these alterations using two methods based on the radioactive decay of isotopes, or different forms of elements. For the zircons, the team measured the decay of uranium to lead, and in the sand, the researchers compared the abundances of radioactive argon isotopes with stable ones. Both methods suggest that the impact occurred about 57.99 million years ago.
That makes the crater far too old to be the smoking gun long sought by proponents of the controversial Younger Dryas impact hypothesis (SN: 6/26/18). The timing also isn’t quite right to link it to a warm period called the Paleocene-Eocene Thermal Maximum, which began around 56 million years ago (SN: 9/28/16). For now, the researchers say, what impact this space punch may have had on Earth’s global climate remains a mystery.
Questions or comments on this article? E-mail us at feedback@sciencenews.org
A version of this article appears in the April 9, 2022 issue of Science News.
G.G. Kenny et al. A Late Paleocene age for Greenland’s Hiawatha impact structure. Science Advances. Published online March 9, 2022. doi: 10.1126/sciadv.abm2434.
Carolyn Gramling is the earth & climate writer. She has bachelor’s degrees in geology and European history and a Ph.D. in marine geochemistry from MIT and the Woods Hole Oceanographic Institution.
Science News was founded in 1921 as an independent, nonprofit source of accurate information on the latest news of science, medicine and technology. Today, our mission remains the same: to empower people to evaluate the news and the world around them. It is published by the Society for Science, a nonprofit 501(c)(3) membership organization dedicated to public engagement in scientific research and education.
© Society for Science & the Public 2000–2022. All rights reserved.
Subscribers, enter your e-mail address for full access to the Science News archives and digital editions.
Not a subscriber? Become one now.