Click here to sign in with or
by Ryan Randall, Florida Institute of Technology
As oil prices remain high and there is an increasing urgency to reduce greenhouse gas emissions, new university research into methods to control biofouling may help lower fuel use for military and commercial ships.
"Proactive In-Water Ship Hull Grooming as a Method to Reduce the Environmental Footprint of Ships" is a recent publication in Frontiers in Marine Science and features a team of Florida Tech researchers, including Geoffrey Swain, Melissa Tribou and Kelli Hunsucker. The article summarizes the findings of many years of research, funded by the Office of Naval Research, that investigated the development of an underwater, remotely operated vehicle and brush system designed to enable the proactive in-water cleaning and maintenance of a ship's hull. The concept is analogous to a robotic vacuum for ships. The researchers have demonstrated that a robot designed for the frequent and gentle wiping of the ship hull will maintain the coating in a smooth and fouling-free condition.
This research coincides with the Navy's goal of having a 12-year dry dock cycle and a reduction in fuel consumption. In the commercial sector, Carnival Cruise Line, with whom the Florida Tech Center for Corrosion and Biofouling Control works, is looking to reduce the intensity of CO2e (carbon dioxide equivalent) emissions from their operations by 40% relative to their 2008 baseline.
"In the past there have been fuel hikes, and when that happens, if you have a fleet of 40 ships, the fuel bill is astronomical," Tribou, ocean engineering and marine sciences research professional said. "If you have a ship that is fouled, the increased drag imparts a penalty and the fuel consumption and costs increase. Therefore, there is a motivation to have your ships clean and operate fouling free the whole time they are at sea."
The development of the brush concept required the design and creation of special tools engineered to effectively remove the biofouling while minimizing the force and damage to the coating. The long-term goal is to develop fully autonomous ship hull cleaners, so a system that requires little power was factored in as well. Prior research guided the choice to favor small-diameter (about 102 mm), vertically rotating brushes rotating at between 300-600 rpm.
Various categories of fouling control coatings were tested at Center's Port Canaveral test site in relation to how they performed with and without the grooming system. The groomed coatings were maintained in a pristine condition; however, when Interspeed BRA640 (a copper ablative) and Intersleek 1100SR (silicone fouling release) were left to foul over a one-year period they both became covered by barnacles, tubeworms and encrusting bryozoans. The BRA640 was initially cleaned with a rotating polypropylene brush, but it was unable to remove the barnacle base plates, so a wire brush was applied. This removed the fouling but also most of the antifouling coating.
The IS1100 was cleaned using the polypropylene brush, which removed most of the fouling while allowing a small amount of biofilm to remain. Some damage also occurred to the coating where the brush filaments were allowed to dig into the coating and where calcareous, or chalky, fouling became entrapped in the brush causing scratches to the coating before being ejected.
Large-scale testing of a remotely operated vehicle (ROV) equipped with a grooming tool has demonstrated that grooming (proactive, frequent light cleaning) can maintain fouling control coatings in a smooth and fouling-free condition for extended periods without causing increases in the discharge of active ingredient into the environment. This concept is now being developed by several commercial companies as a service to ship owners and operators. Explore further Electrically charged surface coatings can eliminate marine bio-fouling More information: Geoffrey Swain et al, Proactive In-Water Ship Hull Grooming as a Method to Reduce the Environmental Footprint of Ships, Frontiers in Marine Science (2022). DOI: 10.3389/fmars.2021.808549 Journal information: Frontiers in Marine Science
Provided by Florida Institute of Technology Citation: Fouling control research may reduce fuel consumption and emissions (2022, April 19) retrieved 28 May 2022 from https://techxplore.com/news/2022-04-fouling-fuel-consumption-emissions.html This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form. For general feedback, use the public comments section below (please adhere to guidelines).
Please select the most appropriate category to facilitate processing of your request
Thank you for taking time to provide your feedback to the editors.
Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.
Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Tech Xplore in any form.
Daily science news on research developments and the latest scientific innovations
Medical research advances and health news
The most comprehensive sci-tech news coverage on the web
This site uses cookies to assist with navigation, analyse your use of our services, collect data for ads personalisation and provide content from third parties. By using our site, you acknowledge that you have read and understand our Privacy Policy and Terms of Use.